3D Printing Technology to Create Shock Absorbing Skin

Shock Absorbing Skin

3D Printing Technology – Custom Shock Absorbing Dampers/Skins


Robots have a tendency to break and often it could be due to improper padding to protect them. However scientists of Computer Science and Artificial Intelligence Laboratory at MIT – CSAIL have come up with a new technique for 3D printing soft materials which tends to make robots safer as well as more accurate in their movements.

For instance, after 3-D printing a cube robot that moves on bouncing, the researchers prepared it with shock-absorbing `skins’ which utilises only about 1/250 of the amount of energy it transfers to the ground. The 3-D printing technology had been utilised to create custom shock absorbing dampers or skins in order to safeguard drones and robots.

Known as the `programmable viscoelastic material – PVM technique, the printing method of MIT provides object with the accurate stiffness or elasticity they may need. According to the MIT, the inspiration for the project had come from a predicament. Common damper resources usually tend to have solid as well as liquid assets which are made from compact, cheap and readily found items like rubber or plastic, but these seem difficult to customize. They cannot be created beyond specific sizes and dampening levels which are already in place.

Cube Shaped Robot – TangoBlack


This issue had been resolved by the team by utilising 3D printing technology in creating a bouncing cube shaped robot from a solid, a liquid together with a flexible rubber type material known as TangoBlack+. Besides absorbing shock, the cube robot is said to be capable of landing more accurately in consideration of its skin.Daniela Rus, Director of CSAIL who had supervised the project and co-wrote a related paper, commented that reduction tends to make the difference in preventing a rotor from breaking of a drone or a sensor from cracking when it tends to hit the floor.

 These materials permit 3-D print robots with visco-elastic properties which can be recorded by the user at print-time as part of the process of fabrication. MIT informed that the technology could be utilised in expanding the lifespan of delivery drones such as the ones that have been created by Amazon and Google. It could also be engaged on a more practical level for performing tasks like helping to protect phone or cushioning heads in helmets and the feet in shoes.

Skins Enables Robot to Land Four Times More Accurately


The skins also enable the robot to land almost four times more accurately recommending that related shock absorbers can be utilised in helping in lengthening the lifespan of delivery drones.The new paper was presented at IEEE/RSJ International Conference on Intelligent Robots and Systems in Korea written by Rus together with three postdocs with lead authors Robert MacCurdy together with Jeffrey Lipton as well as third author Shuguang LiThe cube robot comprises of a rigid body, accompanied by two motors, a microcontroller, battery together with inertial measurement unit sensors.

Four layers of looped metal strip seem to serve as springs which tend to propel the cube. Hod Lipson, professor of engineering at Columbia University and co-author of `Fabricated: The New World of 3-D Printing’, states that by combining multiple materials in achieving properties which are beyond the range of the base material, this work drives the envelope of what’s probable to print. On top of that being able to do this in a single print-job, raises the bar for additive manufacturing’.